Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Viruses ; 14(7)2022 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-35891522

RESUMO

Phage-antibiotic synergy is a promising therapeutic strategy, but there is no reliable method for synergism estimation. Although the time-kill curve assay is a gold standard, the method is not appropriate for fast and extensive screening of the synergy. The aim is to optimize the checkerboard method to determine phage-chemical agent interactions, to check its applicability by the time-kill curve method, and to examine whether the synergy can be obtained with both simultaneous and successive applications of these agents. In addition, the aim is to determine interactions of the Pseudomonas phage JG024 with ciprofloxacin, gentamicin, or ceftriaxone, as well as the Staphylococcus phage MSA6 and SES43300 with ciprofloxacin, gentamicin, and oxacillin. The results show that the optimized checkerboard method is reliable and that results correspond to those obtained by the time-kill curve. The synergy is detected with the phage JG024 and ciprofloxacin or ceftriaxone against Pseudomonas aeruginosa, and the phage SES43300 with ciprofloxacin against MRSA. The synergy was obtained after simultaneous applications, and in the case of P. aeruginosa, after application of the second agent with delay of one hour, indicating that simultaneous application is the best mode of synergy exploitation for therapy. The checkerboard method can be used for thorough clinical studies on synergy and in the future for personalized therapy when infections are caused by multiple resistant bacteria.


Assuntos
Bacteriófagos , Ceftriaxona , Antibacterianos/farmacologia , Ciprofloxacina/farmacologia , Sinergismo Farmacológico , Gentamicinas , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa
2.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-823929

RESUMO

Objective: To examine the effect of Rumex crispus (R. crispus) and Rumex sanguineus (R. sanguineus) plant extracts against isolates of Acinetobacter baumannii (A. baumannii) from wounds, including multidrug-resistant strains.Methods: Six prepared Rumex extracts were subjected to liquid chromatography-tandem mass spectrometry. Antimicrobial activity of extracts and pure compounds (catechin, quercetin, isoquercitrin, emodin, and gallic acid) was examined by a microtiter plate method, while for determination of compound binary combinations activity a checkerboard method was applied. Active fractions of extracts were detected by agar-overlay high-performance thin-layer chromatography-bioautography assay followed by liquid chromatography - diode array detection - mass spectrometry analysis. Results: A total of 28 compounds were detected in two extracts of R. crispus and 26 compounds in four different R. sanguineus extracts, with catechin as a dominant component. Anti-A. baumannii activity was confirmed for all six R. sanguineus and R. crispus extracts at the concentration range from 1 to 4 mg/mL. Neither examined single compounds nor their binary combinations exhibited an anti-A. baumannii activity (MIC>256 μg/mL). The bioautography showed that fractions with the most prominent anti-A. baumannii activity tended to contain more polar compounds, predominantly flavonol (quercetin and kaempherol) glycosides; but also fractions containing flavanone (eriodictyol) glycosides and anthraquinone (emodin) glycosides; and less polar eriodictyol aglycone. Conclusions: The results justify and elucidate the traditional application of R. sanguineus and R. crispus extracts for wound healing, indicating the necessity for their further examination in combat against multidrug-resistant A. baumannii isolates from wounds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...